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Recent experiments by Robertson show that the fracture toughness Gi c of glassy 
polystyrene PS does not decrease to the ideal brittle value 23' (where 3, is the surface 
energy for PS) at molecular weights Mw below Mc the entanglement molecular weight. 
Instead Gic is more than an order of magnitude above 27 at Mc and decreases slowly 
below Mc. It is postulated that a small craze exists at the crack tip in such low molecular 
weight glassy polymers. However, since entanglements do not occur single molecules must 
span this craze; if they do not the craze becomes unstable and the crack advances. Under 
these conditions a critical craze surface displacement exists and Gfc can be computed to 
be 

Gjc = Sc (X--1) (R2) 1/2, 

where ;k and Sc are the craze fibril extension ratio and craze surface drawing stress 
observed in high molecular weight crazes (both quantities should be only weak functions 
of Mw ) and (R2) 1/2 is the root mean square end-to-end distance of the PS molecule in the 
glass from neutron scattering measurements. The fracture toughness is predicted to 
decrease as M~/2; this prediction and the absolute magnitude of Gi c are in excellent 
agreement with experiment. 

1. Introduction 
Linear elastic fracture mechanics (LEFM) plays an 
increasingly important role in the design of 
engineering structures made from polymers, 
ceramics or metals [1]. In LEFM it is assumed 
that the critical conditions for the onset of  
unstable crack propagation can be characterized 
by a single material parameter, Gic , the fracture 
toughness, if the elastic constants of  the material 
are known. This assumption can be rigorously 
justified [2] for materials which exhibit no 
plasticity at the crack tip where Gic = 23' and 
where 7 is the surface energy of  the perfect cleavage 
surface. The analysis then leads to the fracture 
criterion proposed by Griffith [3] ahnost 60 years 
ago. However, in the engineering materials to 
which LEFM is usually applied, Gic greatly 
exceeds 27 due to irreversible work clone in the 
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plastic zone at the crack tip. To compute Gic 
under these conditions it is necessary to supply a 
microscopic failure criterion for the material at the 
crack tip in the plastic zone. Until this fundamental 
microscopic failure criterion can be specified, the 
assumption that GIC is a constant of the material 
is dubious. 

The problem can be restated somewhat dif- 
ferently as follows. There are methods and models 
for computing GIC given that a crack propagates 
with a steady state plastic zone that can be charac- 
terized by certain displacement and stress fields. 
The catch is that one must find a physical mechan- 
ism or mechanisms which limits the magnitude of 
the allowed displacements so that the crack will 
advance into the plastic zone. I f  such a mechanism 
does not exist the plastic zone will simply grow in 
size as the stress increases until the entire uncracked 
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cross-section of the specimen has yielded. The 
usual ad hoc solution to this problem is to assume 
that a critical crack tip opening displacement, or 
COD, exists; if the COD is exceeded, the crack is 
supposed to advance. Note, however, that there is 
usually no justification on a microscopic basis for a 
fundamental upper limit on the crack tip opening 
displacement. In the absence of such justification, 
we are simply substituting a microscopic assump- 
tion for the macroscopic assumption, GIc = 
material constant. 

The important question therefore is: what 
makes the critical COD critical? Various attempts 
have been made to answer this question in metals. 
The COD has been linked to macroscopic tensile 
properties [4], to the spacing between brittle or 
weak-interface inclusions in steels and aluminium 
alloys [1, 5], or to the existence of a maximum 
plastic strain gradient at the crack tip [6] imposed 
by the assumption of a maximum density of  dis- 
locations. Although qualitatively useful, these 
attempts have not been successful quantitatively 
(for example, the inclusion model predicts an 
increase in Gic with an increase in the yield stress 
of  the matrix i f  the inclusion spacing is f'Lxed 
whereas a decrease in Gic is observed experimen- 
tally [1]). In part these difficulties may be 
attributed to the complex geometry of the plastic 
zone at the crack tip in most engineering alloys. 

The geometry of the plastic zone in glassy 
polymers is relatively simple. It is now well known 
that this zone usually consists of  a craze (or a 
bundle of  crazes). These crazes are zones of cavi- 
tation, the surfaces of  which are spanned by drawn 
polymer ligaments or fibrils. The craze has surfaces 
which are very close together, planar and almost 
parallel. The fibrils inside the craze are accurately 
perpendicular to the craze surfaces whereas the 
polymer outside the craze can be treated as being 
linear elastic. Because of this simplicity, computing 
Gic from models of  the micromechanics of  the 
craze is straightforward. There are many measure- 
ments of  Gic in the literature (and for that matter 
many measurements of  the slow crack growth 
curve Gc (ti) where li is the crack speed) and 
notable attempts to relate these to craze micro- 
mechanics [7 -14 ] .  With the exception of early 
papers by Cessna and Sternstein [7, 8] all these 
attempts rely explicitly or implicitly on the 
assumption of the existence of a critical COD. 
There has been no attempt to justify this assump- 
tion. In this paper it is demonstrated that for low 
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molecular weight glassy polymers the assumption 
of a critical COD can be rigorously justified in 
molecular terms. A theory for Gm is derived for 
these materials that allows one to predict values of 
this quantity from (R 2)1/2, the mean square end- 
to-end distance of a molecule in the unoriented 
glass, Se, the stress to draw craze fibrils from the 
craze boundary and X the extension ratio of  the 
drawn craze fibril. Since all of  these quantities can 
be measured, the theoretical predictions, with no 
adjustable parameters, can be compared with 
experimental results. This comparison reveals 
excellent agreement, both in the molecular weight 
dependence of Gzc and in its absolute magnitude. 

Paradoxically, the same arguments can be 
extended to show that it is most unlikely that the 
value of the COD is the fundamental causative 
parameter in craze fracture in high molecular 
weight polymers. If  the COD attains a constant 
value at craze fracture it is because both COD and 
craze fibril failure at the crack tip are functions of  
the same variables, e.g. time and local stress history. 

2. Craze deformation and failure 
mechanisms 

Before discussing possible craze failure mechan- 
isms it is first necessary to define a few craze 
deformation parameters with the aid of Fig. 1. 
One important such parameter is the craze thick- 
ness T, the distance between two craze surfaces. 
The craze fibrils shown in Fig. 1, however, arise 
from the plastic deformation of a certain original 
layer of  unoriented polymer of  thickness To, 
which also has been called the primordial craze 
thickness. From a mechanics standpoint, however, 
the most important craze deformation parameter 
is neither of  these but rather the craze surface dis- 
placement, w. Each surface of the primordial craze 

Figure 1 (a) Transmission electron micrograph of an air 
craze at a crack tip in a thin film of polystyrene (high 
molecular weight). (b) Schematic drawing of this craze 
showing T, the craze thickness, To, the thickness of the 
original or primordial layer of bulk PS which fibrillates to 
form the craze, and w, the craze surface displacement. 



layer is displaced outward by w to form the 
surfaces of the craze. Clearly these three craze 
deformation parameters are linked by the relation 

r = ro  + 2w. (1) 

In general, all of  these parameters vary with 
distance x along the craze and increase as the craze 
grows in length and thickness. We can define the 
extension ratio of  the fibrils as 

X = T/To, (2) 

and, since the plastic deformation of the fibrils 
occurs at approximately constant volume, the 
volume fraction, v~, of  fibrils in the craze is 

1 
v, = --. (3) 

3  ̀
We note in passing that if the craze/crack dis- 

placement profile w(x) can be measured the craze 
surface stress profile S(x) can be determined 
[15-17]  (for an isolated symmetric craze) to be 

2fo '~  S(x) = - fi(~) cos (~x) d~ + % (4a) 
7: 

where 

p(~) = w(x) cos (~x) dx. (4b) 

Here % is the uniform tensile stress on the 
plane of the crack/craze before crack/craze 
formation and E is Young's modulus. Finally, the 
true tensile stress, at, in the craze fibrils is 

at = XS. (5) 

Two competing mechanisms for craze thickening 
exist [17, 18]. The craze can thicken by drawing 
new polymer into the fibrils at the craze surface. 
For such a mechanism, one expects To to increase 
as T increases and that 3, of  the drawing fibrils will 
be greatest in regions along the craze where S is 
greatest as dictated by the strain (orientation) 
hardening characteristic of  the at-3,  curve of  the 
fibrils. One cannot view this thickening-by-drawing 
mechanism as contributing to craze failure, except 
in the sense that regions of  high 3, within the craze 
will be preferential sites of craze fibril breakdown 
and crack propagation. 

On the other hand, the craze fibrils once 
formed can continue to deform in creep. This 
further creep of the craze fibrils also makes a 
contribution to craze thickening. Unlike the 
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Figure 2 (a) Extension ratio of craze fibrils versus position 
along the craze (after [19]). (b) True fibril stress versus 
fibril extension ratio (after [19] ). 

surface drawing mechanism, however, the fibril 
creep mechanism produces craze damage and 
ultimately leads to fibril rupture. 

To know which of these mechanisms is the 
dominant mechanism of craze thickening we must 
appeal to experiment. For air crazes in commercial 
,polystyrene (PS) (Mn = 0.98 x l0 s ;Mw = 3.1 x 105) 
the answer is clear from transmission electron 
microscopic measurements [19]. As shown in 
Fig. 2a, X is approximately constant along the 
length of the craze, rising only just behind the tip 
where S increases moderately. A true stress- 
extension ratio curve for the craze fibrils is shown 
in Fig. 2b. These results indicate that the major 
mechanism of air craze thickening is by drawing 
new polymer into the craze fibrils at the the craze 
surfaces. 

A plausible explanation of the rapid increase in 
at with X in Fig. 2b is that it results from the 
increasing resistance of the entanglement network 
to further deformation due to orientation of  the 
network chains. In fact, assuming a molecular 
weight between entanglements Me of  35 000 as 
inferred from melt viscosity data [20] the limiting 
extension ratio of  the PS entanglement network 
would be 3`max ~ 6 .  In this picture, further 
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deformation of the fibrils by creep would involve 
disentangling the chains. The best current model 
[21, 22] of this chain disentanglement is that of 
chain diffusion or "reptation" in a tube rep- 
resenting the chain surroundings. In any case, it is 
clear that there should be no casual relationship 
between the craze surface displacements, w (or 
craze thickness) and this chain disentanglement 
process which leads ultimately to fibril failure. In 
fact, from Equation 4 it can be demonstrated that 
an increased w at the crack tip always leads to a 
decrease in S (and ~t as long as surface drawing is 
the major craze thickening mechanism) so that an 
increase in w by surface drawing will always retard 
craze fibril breakdown. However, both craze dis- 
placement and chain disentanglement are time and 
stress-dependent processes so that w may reach a 
certain value at the same time fibril failure is 
complete. 

Now let us turn our attention to low molecular 
weight PS where the molecular weight is approxi- 
mately equal to or less than Me. It is well known 
that below Me the polymer exhibits a very low 
fracture stress and low fracture toughness [23-26] .  
Further it has been observed by electron micro- 
scopy that long craze fibrils (and therefore crazes 
themselves) are not stable below Me [27-29] .  It 
has been suggested that since metastable entangle- 
ments cannot form, crazes cannot develop [23]. 
One would expect no strain-hardening in the fibril 
stress-strain curve and thus no fibril formation. 
Following this reasoning further, one would expect 
the fracture toughness, Gin, to approach 23' ~-- 
0.08 J m -2 for PS once the molecular weight is 
reduced below Me. Recent experiments by 
Robertson on PS with a very narrow molecular 
weight distribution, however, show that this 
expectation is not realized [25]. Rather Gic is 
about one order of  magnitude greater than 23'just 
below Me and only appears to extrapolate to 23' at 
a molecular weight approximately corresponding 
to the dimer. 

In retrospect this result is not surprising. While 
long craze fibrils cannot be stable, shorter craze 
fibrils could be stable below Me if the ends of  a 
single polymer molecule are embedded in the 
undeformed polymer* on either surface of the 
craze. Transmission electron micrographs of  craze 
tips in higher molecular weight PS indicate that 

these taper to thicknesses less than 25 A. Thus 
even in low molecular weight PS, one expects that 
a craze of very narrow thickness will form at the 
crack tip. Unlike the case of  higher molecular 
weight PS where the fibrils fail by chain disen- 
tanglement, however, these low molecular weight 
crazes will fail when the craze surface displace- 
ment increases to the point where single molecules 
cannot span the surfaces of  the craze. 

Let us examine the requirements for this critical 
condition in more detail with the aid of  Fig. 3. In 
Fig. 3a, the thickness profile of  the craze is shown 
and a highly extended molecule is shown at a 
position behind the craze tip such that any further 
thickening of the craze in that position will cause 
these ends to be incorporated in the fibril and the 
craze will fail. For this to happen the primordial 
craze thickness must approach the size of the 
molecule in the undeformed glass as shown in 
Fig. 3b. We can reduce our requirement for low 
molecular weight craze stability to a requirement 
that the polymer molecule in the unoriented 
polymer span the primordial craze thickness. This 
idea has also been emphasized by Haward et al 

[30] in their recent paper on craze stability. To 
first order one may set the critical craze condition 
for fracture to be 

To ~> (R2)  1/2 , (6) 

where (R 2)1/2 is the root mean square end-to-end 
distance of the polymer molecule in the 
undeformed glass. This assumption will be 
examined later using the full statistical treatment 
of the spanning problem due to Haward et al. 

The further assumptions will be made that as 
long as the low molecular weight craze is stable, 
the deformation characteristics of  the craze are 
similar to those of higher molecular weight PS. In 
particular, the craze is assumed to thicken by 
drawing fibrils from the craze surface at an average 
extension ratio X of about 4 (Fig. 2a). Rewriting 
Equation 6 with the aid of Equations I and 2 we 
derive the critical craze surface displacement, w e 
(the craze surface displacement at the crack tip) to 
be 

we k (X -- 1) T% = �89 (X -- 1) (R2) 1/2 . (7) 

For a polystyrene molecule in the glass (R z)l/~ 
has been determined by neutron diffraction studies 

*In order for the low molecular weight chains to flow past each other viscously even in the absence of entanglement, the 
polymeric glass must be brought to a state of yield and this molecular mobilization happens over a very small dis':ance 
at the craze surface. 
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Figure 3 (a) Schematic drawing of craze thickness profile 
with a highly extended molecule at the critical position 
along the craze. (b) Schematic drawing of the craze 
primordial thickness profile T o showing the molecule just 
spanning To in the undeformed glass at the critical 
position. 
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Figure 4 (a) Plot of craze surface stress versus total 
opening displacement. (b) Crack and craze geometry. (c) 
Craze/crack surface stress profile. (d) Craze/crack surface 
displacement profile. Solid lines show realistic craze S and 
w profiles; dashed lines show idealized profiles according 
to the Dugdale model. 

[ 3 1 - 3 3 ]  to have the same value it has in dilute 

solution in a theta solvent, i.e. 

(R2)1/2 = 0 . 0 7 M ~ :  nm (8) 

so that for 2 , = 4 ,  the critical craze surface 

displacement is 

w e = 0.105M~/2 nm. (9) 

3. Fracture toughness and craze 
micromechanics 

The planar geometry o f  the craze makes for 
considerable simplicity in computing the fracture 
toughness, GTC. Assume the craze at crack tip 
propagates together  with the crack and maintains a 
steady state displacement profile. The work done 
on the craze per infinitesimal unit area o f  craze 
advance is GIC and can be shown to be 

Gzc = -- 2 S(x)  --dw dx = 2 Sdw, 
o dx 

(10) 

where 2a0 and 2a are the crack length and crack 
plus craze length, respectively, and w~ is the craze 

surface displacement at the crack tip as shown in 
Fig. 4. I f S  is p lo t ted  against the corresponding 2w 

at various points  along the craze surface, GTC is 
simply the area under that curve (Fig. 4). 

Our previous experiments [19] on polystyrene 
crazes indicate that  the craze surface stress rises to 

35 MPa at the craze tip and falls to a value of  

~ 2 5 M P a  at the craze base. For  purposes o f  
estimating Gic  therefore,  it is reasonable to 
assume that  the craze surface stress is constant 
over the craze at a value S e = 30MPa*. Such a 
model  of  a crack with a plastic zone o f  constant 
tract ion at its tip is known as the Dugdale model  
[34, 35] and it leads to the very simple result: 

GIc = 2wcSe. (11) 

Substituting wc from Equation 9, and Se = 30 MPa, 
one predicts 

GIc  = 0 .0063M 1/z J m  -2 (12) 

*We will argue the craze surface stress, since it is the stress for plastic deformation (drawing fibrils from the craze 
surface) should be insensitive to molecular weight at least over the range considered here. This constancy is also 
indicated by the constancy of the stress for craze initiation observed in other experiments [26 ]. 
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Figure 6 Critical primordial craze thickness derived from 
GIC via Equation 13 versus (R=) 1~2, the mean square 
end-to-end distance of polystyrene molecules in the glass. 
The GIC data are average values taken from Robertson's 
Table I [25 ]. The lines of constant P are lines of constant 
probability that  a PS molecule will span the primordial 
craze thickness from the theory of Haward et al [30].  

5. Comparison with experiments 
Robertson [25] has measured the fracture 
toughness of narrow fractions of PS by measuring 
the critical stress intensity factor Kic (Gic = 

1386 

Figure 5 Fracture toughness, GIC , versus molecular 
weight (peak of the distribution) for narrow molecular 
weight fractions of polystyrene (after Robertson [ 2 5 ] ) .  
Dashed line shows the prediction of the present theory 
(Equation 12). 2")' is GIC for ideally brittle fracture and 
Me is the chain entanglement molecular weight from 
viscosity measurements. 

K~c/E ) for propagation of a cleavage crack in a 
10/~m thick layer of the PS between two sheets of 
high molecular weight PMMA. His data are shown 
in Fig. 5. Note that as the molecular weight is 
decreased from l0 s to 35 000 ~Me,  the entangle- 
ment molecular weight, that Gic drops drastically 
but that below Me the dependence of Gic on 
molecular weight becomes much less pronounced 
and that at the lowest molecular weights tested, 
3500, Gic is still more than a factor of four higher 
than 23', the true surface energy of a polystyrene 
surface. Also plotted on Fig. 5 is the Gic predicted 
by the theory (Equation 12). Not only is the 
predicted dependence of  Gic on M~ 2 closely 
followed below Me but also the magnitudes of the 
Gics predicted are in excellent agreement with 
those observed. 

One can demonstrate this agreement in a dif- 
ferent way and gain some additional insight into 
the microscopic critical condition for craze 
fracture. By combining Equations 7 and 11 one 
can show that the critical value for the craze 
primordial thickness Toe is given by 

GIc 
r~ = ( x -  1)se" (13) 

Substituting the same values for Se and X -- 1, one 
can then plot To e versus LR2) 1/2 as shown in Fig. 6 
to test Equation 6. Below Mc To_ ~ LR~) 1/2 but 
above Me, T% greatly exceeds (R2) ~/2 , presumably 



due to the fact that long fibrils can be drawn out 
from the craze surfaces once an entanglement 
network can be formed in the fibrils. Note also the 
large scatter in derived To e values for 110000 
molecular weight; the scatter may reflect the fact 
that To e in this molecular weight regime cannot be 
considered to be a fundamental parameter con- 
trolling failure of  the craze (or as suggested by 
Robertson that more than one craze nucleates 
randomly at the crack tip). 

What percentage of molecules below Me must 
be embedded in the craze surfaces for the craze to 
still be stable? The statistical theory of Haward 
et al. offers a way to compute this percentage since 
they give expressions for P, the probability that a 
molecule (Gaussian chain) with a given (RZ) 1/~ will 

span a distance To The lines for P = 0.05, P = 0.20 
and P = 0.50 on Pig. 6 represent their theory. By 
comparing these with the experimental data it 
appears that for the lowest molecular weight, 
approximately 10% of the molecules must span 
the craze for the craze to be stable but considering 
the assumptions of the theory and the scatter in 
the original data one cannot place too much 
reliance on this value. 

It would be satisfying to be able to directly 
observe the craze at the crack tip in these low 
molecular weight PS. Unfortunately, such obser- 
vations will not be easy. One can calculate the 
critical length of  the craze, Aa, expected from the 
Dugdale model to be 

/ k  

= rr ( K I / 2  - 7r EGIc (14) 
zxa 8 \ s d  8 

and the maximum craze thickness Tc to be 

Te = XT% ~ 3,(R2) 1/z �9 (15) 

The computed critical craze lengths range between 
0.4 and 1.1 gm and the maximum craze thicknesses 
range between 17 and 40 nm. Since the crazes are 
so short and their thicknesses are much less than 
the wavelength of  light, one cannot expect to be 
able to observe evidence of  their presence optically, 
either directly or on the fracture surface. While 
there is some hope of detecting such a craze with 
transmission electron microscopy, our experience 
to date indicates the fragile f'rims made from these 
low molecular weight polystyrenes are very diffi- 
cult to handle. If  a stable crack tip (usually at the 
end of  a long crack) is located, it appears to have 
undergone significant antiplane strain (mode 1II) 
opening. There is evidence of  some cavitation in 

front o f  the crack tip but there is also a significant 
component of  shear displacement normal to the 
film. 
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